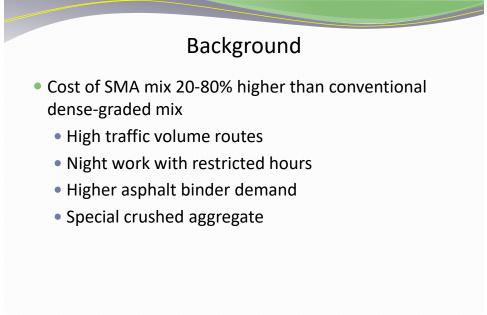


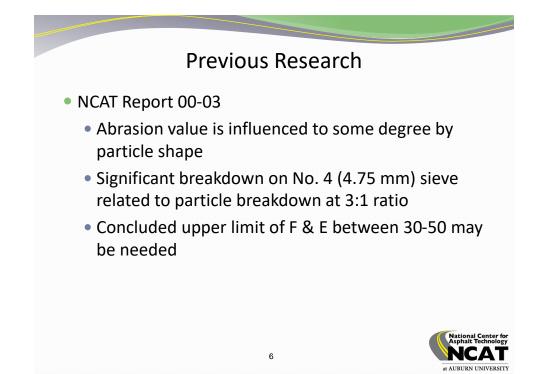
1st International Conference on SMA November 6, 2018

> Donald Watson, NCAT Grant Julian, NCAT


Sponsor- Georgia Department of Transportation

Outline

- Background- Why is the research needed?
- Objective- What will we do?
- Work Plan- How will mixes be evaluated?
- Results and Conclusions

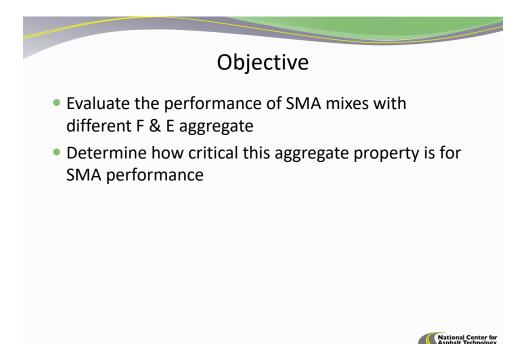

4

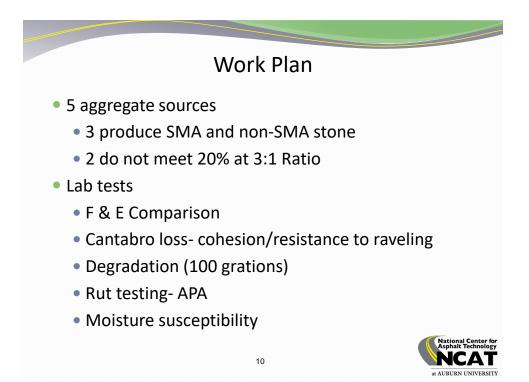
Special Crushed Aggregate

- Special crushing equipment
- Investment/benefit considerations
- High quality aggregates
 - European standards
 - L.A. wear ≤ 30
 - Flat and elongated (F & E) ≤ 20% at 3:1 ratio
 - To resist degradation from studded tires
 - May not be necessary for other countries

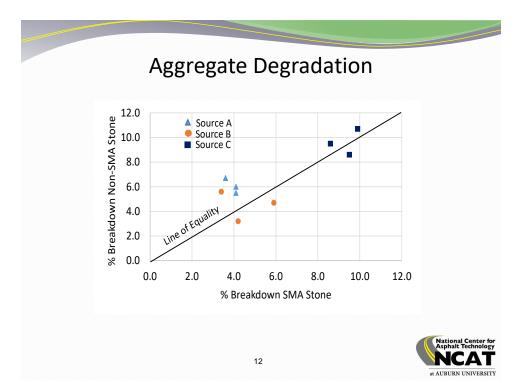
Previous Research (Continued)

 Oduroh- Increases up to 40% F & E at 3:1 ratio did not adversely affect performance of Superpave mixes

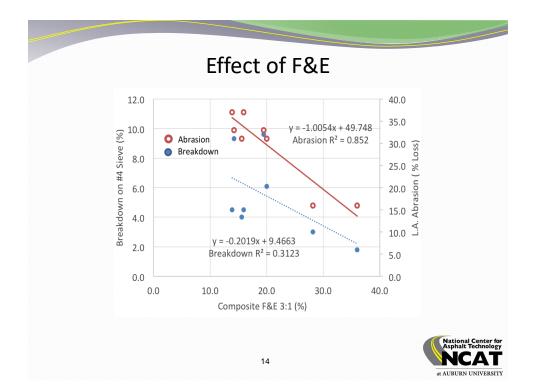

7


 Barksdale- Related particle breakdown to both particle shape and L.A. abrasion loss

Barksdale Recomme	ndation (1992)
L.A. Abrasion	F & E Limit
% Loss	(3:1 Ratio)
≤ 45	≤ 20
≤ 40	≤ 25
≤ 35	≤ 35
≤ 30	≤ 40
≤ 25	≤ 45
	National Center



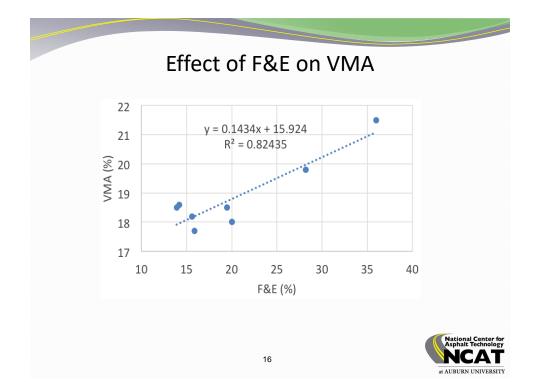
Quarry	Aggregate	% F & E 5:1	% F & E 3:1	% F & E 3:1	
		(GDT 129)	(GDT 129)	(ASTM D4791)	
	SMA 7	0.5	19.7	8.4	
А	7	1.4	25.5	17.3	
	89	2.2	23.9	13.1	
В	SMA 7	0.3	17.0	6.8	
	7	0.1	19.9	9.5	
	SMA 89	0.0	18.2	7.0	
	89	0.0	19.2	10.2	
	SMA 7	0.0	15.5	9.1	
С	7	0.0	23.3	15.7	
	89	3.0	30.4	17.8	
D	7	6.5	38.9	26.5	
D	89	3.8	20.7	20.9	
-	7	6.2	43.6	31.5	
E	89	1.9	31.6	16.8	

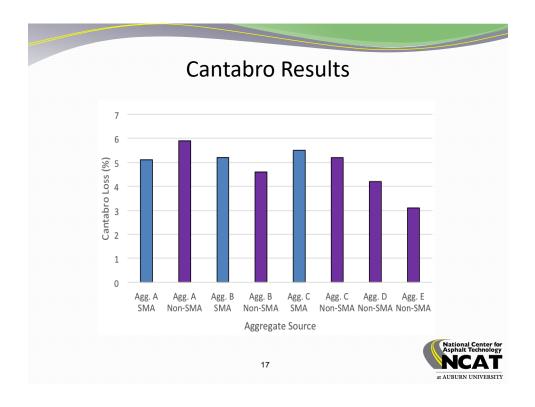

Degradation (Difference from Control)

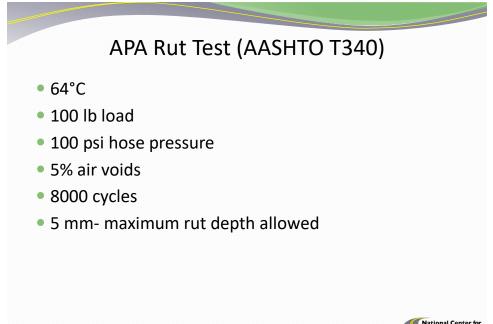
Sieve Size	Agg. A SMA	Agg. A Non-SMA	Agg. B SMA	Agg. B Non-SMA	Agg. C SMA	Agg. C Non-SMA	Agg. D Non-SMA	Agg. E Non-SMA
No. 4	4.0	6.1	4.5	4.5	9.3	9.6	3.0	1.8
No. 8	2.1	3.6	2.9	3.3	6.7	6.4	1.5	2.2
No. 200	0.0	0.6	0.0	0.3	0.6	0.5	0.1	0.3

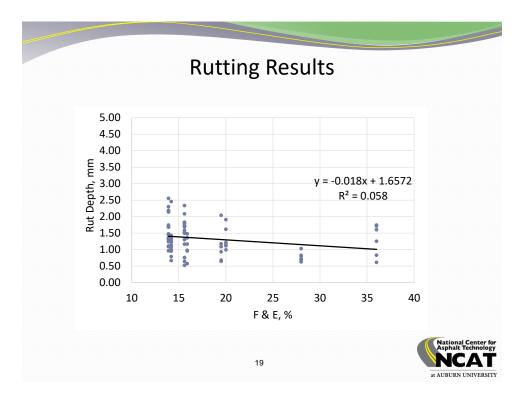
13

Percent Passing



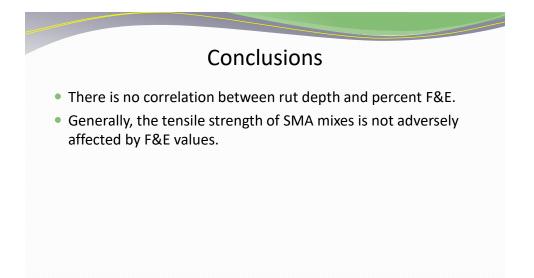



Mix Design	Verification
------------	--------------


Property	Agg. A SMA	Agg. A Non- SMA	Agg. B SMA	Agg. B Non- SMA	Agg. C SMA	Agg. C Non- SMA	Agg. D Non- SMA	Agg. E Non- SMA
Composite F&E	15.6	20.0	13.9	15.9	14.2	19.5	28.2	36.0
L.A.	31	31	37	37	33	33	16	16
Opt. AC,%	6.4	6.2	6.5	6.2	6.6	6.6	7.1	8.3
VMA	18.2	18.0	18.5	17.7	18.6	18.5	19.8	21.5

Moisture	Susce	pti	bi	lity
----------	-------	-----	----	------

Aggregate Source	Agg. A SMA	Agg. A Non-SMA	Agg. B SMA	Agg. B Non-SMA	Agg. C SMA	Agg. C Non-SMA	Agg. D Non-SMA	Agg. E Non-SMA
TS-Conditioned (psi)	88.3	89.9	78.3	92.6	85.1	84.7	76.4	77.1
TS-Control (psi)	79.4	104.8	72.5	93.7	78.8	77.6	85.2	86.4
TSR, % (≥ 80)	111.3	85.8	108.0	98.8	108.0	109.1	89.6	89.3


Moisture susceptibility 6.0% air voids Loading rate- 0.065 inches/minute

Conclusions

- The 3:1 ratio was much more sensitive to F&E than 5:1.
- Previous recommendations of no more than 20% F&E based on a 3:1 ratio have been found to be unnecessarily restrictive.
- Aggregates with high F&E values may perform well if they have low abrasion loss.
- Aggregate breakdown on the No. 4 (4.75 mm) and No. 200 (0.075 mm) sieves is not dependent on F&E alone.
- Aggregate with high F&E aggregate particles generally have higher VMA properties and may require higher binder content.

Recommendations

- The maximum limit (≤ 20% F&E at a 3:1 ratio) that is a standard threshold used by most agencies for SMA aggregate should be reconsidered
- Aggregates meeting Superpave F&E criteria specified in AASHTO M323 at a 5:1 ratio may be acceptable.
- Similar research is needed for quarry sources that may have both high L.A. abrasion loss and a high proportion of F & E aggregate particles to determine if such sources can also provide satisfactory performance.

